Skip to main content

What is GPS?

            Having seen what GIS is, we will now have a look at what GPS or the Global Positioning System is! Wikipedia's following GPS definition says it all. "The Global Positioning System (GPS) is a space-based global navigation satellite system (GNSS) that provides reliable location and time information in all weather and at all times and anywhere on or near the Earth when and where there is an unobstructed line of sight to four or more GPS satellites."

           The Global Positioning System (GPS) is a satellite-based navigation system made up of a network of 24 satellites placed into orbit by the U.S. Department of Defense. The 24 satellites are orbiting the earth about 12,000 miles above us. They are constantly moving, making two complete orbits in less than 24 hours. These satellites are travelling at speeds of roughly 7,000 miles an hour.

          GPS satellites are powered by solar energy. They have backup batteries onboard to keep them running in the event of a solar eclipse, when there's no solar power. Small rocket boosters on each satellite keep them flying in the correct path.

          Here are some other interesting facts about the GPS satellites (also called NAVSTAR, the official U.S. Department of Defense name for GPS):
  • The first GPS satellite was launched in 1978.
  • A full constellation of 24 satellites was achieved in 1994.
  • Each satellite is built to last about 10 years. Replacements are constantly being built and launched into orbit.
  • A GPS satellite weighs approximately 2,000 pounds and is about 17 feet across with the solar panels extended.
  • Transmitter power is only 50 watts or less.



            GPS satellites circle the earth twice a day in a very precise orbit and transmit signal information to earth. GPS receivers take this information and use triangulation to calculate the user's exact location. Essentially, the GPS receiver compares the time a signal was transmitted by a satellite with the time it was received. The time difference tells the GPS receiver how far away the satellite is. Now, with distance measurements from a few more satellites, the receiver can determine the user's position and display it on the unit's electronic map.

            A GPS receiver must be locked on to the signal of at least three satellites to calculate a 2D position (latitude and longitude) and track movement. With four or more satellites in view, the receiver can determine the user's 3D position (latitude, longitude and altitude). Once the user's position has been determined, the GPS unit can calculate other information, such as speed, bearing, track, trip distance, distance to destination, sunrise and sunset time and more.



             Today's GPS receivers are extremely accurate. Today GPS receivers are embedded in a large number of phones. Day-by-day, knowingly or un-knowingly the common man is getting more and more exposure to GIS and GPS technology based systems. Cheers to Geo!...

Comments

  1. have you heard about USGS? Its one and only service provider for all GPS systems. Not even google provides its own map service, google too uses USGS. For more info visit usgs.gov

    ReplyDelete
  2. Ya...It's the US Geological Survey...Isn't it?...Yes I know about it!

    ReplyDelete

Post a Comment

Please leave your comments here...

Recommended for You

Playing with the markers and info window bubbles...

    In the last few posts, we have seen some marker examples and some information window examples. Now, lets do something interesting combining these two things. Just writing that "This is an info window" in the information bubble is not very interesting! And I know this...Have gone through the same phase!     So, today we will do something interesting! We will display the latitude- longitude co-ordinates of the point that the user clicks on the map! Doing this is not at all complex! Copy paste the following code and you will see for yourself a map coming to life!     The output of the above code looks as seen in the result section above! If you have any queries regarding the above code please comment on the blog post or feel free to contact me at my mail ID .

Map Loading...

    The blank web page seems so boring and dull when the map is still loading. You will come across such a situation quite often where you will be having a slow internet connection! We cannot do anything about the slow internet connection, but we can surely avoid the dull blank web-page by using a simple trick. We can place a "loading" image at the center of the web page so that the page doesn't look blank! An image like this:             The following code will show you how this can be done and here it is!     As you all can see the code is very very simple and the output will look as seen in the results section above. The image below shows the loading stage of the map.       Do let me know what you think about the examples shared here! Do leave your comments here! Till the next example, happy mapping!

Ground Truth - How Google Builds Maps

    Todays's article is cross posted from The Atlantic 's Tech section. The article was posted by Alexis Madrigal who is a senior editor at The Atlantic , where he oversees the Technology channel. So, thanks to The Atlantic and Alexis Madrigal, we will have an exclusive look inside Ground Truth , the secretive program to build the world's best accurate maps.     Behind every Google Map, there is a much more complex map that's the key to your queries but hidden from your view. The deep map contains the logic of places: their no-left-turns and freeway on-ramps, speed limits and traffic conditions. This is the data that you're drawing from when you ask Google to navigate you from point A to point B -- and last week, Google showed me the internal map and demonstrated how it was built. It's the first time the company has let anyone watch how the project it calls GT, or "Ground Truth," actually works.     Google opened up at a key moment in its evo

The bitter divorce of PSD and HTML

    Today's article is an interesting post that I read. The original post in Portuguese and authored by Fabricio Teixeira  can be found at arquiteturadeinformacao  (Now don't ask me pronounce this =)).     Some are calling it the death of PSD  but I prefer calling it a "divorce". PSD and HTML are both healthy and living strong, just that they do not live together anymore. "PSD to HTML", which for years was the most accurate and sometimes the only right path to web design process, seems like has its days counted.     Firstly you draw a page in Photoshop; impeccable layout, representing exactly how the web pages would appear when opened in a browser. After a sign-off on this picture (PSD) from the client the front end developer transforms these pictures into HTML, CSS and Javascript. The assets are cut, one by one, exported from the PSD and integrated into the HTML. Plugins and new tools are created in the process and some companies even charge upto $1

Panoramio Layer...

    Let's start with the obvious question first...What is Panoramio? Panoramio is a geolocation-oriented photo sharing website. Panoramio website was officially launched on October 3, 2005 by Joaquín Cuenca Abela and Eduardo Manchón Aguilar, two Spanish entrepreneurs and was acquired by Google in July 2007.     Accepted photos uploaded to the site can be accessed as a layer in Google Maps, with new photos being added at the end of every month. The site's goal is to allow Google Maps and Google Earth users to learn more about a given area by viewing the photos that other users have taken at that place. The website is available in several languages and can be viewed here .     You may add photos from Panoramio as a layer to your maps using the PanoramioLayer object. The PanoramioLayer renders a layer of geotagged photo icons from Panoramio on the map as a series of large and small photo icons. Let us now have a look at the following code to understand the concept in more det